Matrices and Their Kirchhoff Graphs

نویسنده

  • Joseph D. Fehribach
چکیده

The fundamental relationship between matrices over the rational numbers and a newly defined type of graph, a Kirchhoff graph, is discussed. For a given matrix, a Kirchhoff graph for that matrix represents the orthogonal complementarity of the null and row spaces of the matrix. A number of basic results are proven, and then a relatively complicated Kirchhoff graph is constructed for a matrix that is the transpose of the stoichiometric matrix for a reaction network for the production of sodium hydroxide from salt. A Kirchhoff graph for a reaction network is a circuit diagram for that reaction network. Finally it is conjectured that there is at least one Kirchhoff graph for any matrix with rational elements, and a process for constructing an incidence matrix for a Kirchhoff graph from a given matrix is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrices in the Theory of Signed Simple Graphs

I discuss the work of many authors on various matrices used to study signed graphs, concentrating on adjacency and incidence matrices and the closely related topics of Kirchhoff (‘Laplacian’) matrices, line graphs, and very strong regularity.

متن کامل

The Laplacian Polynomial and Kirchhoff Index of the k-th‎ Semi Total Point Graphs

The k-th semi total point graph of a graph G, , ‎is a graph‎ obtained from G by adding k vertices corresponding to each edge and‎ connecting them to the endpoints of edge considered‎. ‎In this paper‎, a formula for Laplacian polynomial of in terms of‎ characteristic and Laplacian polynomials of G is computed‎, ‎where is a connected regular graph‎.The Kirchhoff index of is also computed‎.

متن کامل

On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...

متن کامل

ON NEW CLASSES OF MULTICONE GRAPHS DETERMINED BY THEIR SPECTRUMS

A multicone graph is defined to be join of a clique and a regular graph. A graph $ G $ is cospectral with graph $ H $ if their adjacency matrices have the same eigenvalues. A graph $ G $ is said to be determined by its spectrum or DS for short, if for any graph $ H $ with $ Spec(G)=Spec(H)$, we conclude that $ G $ is isomorphic to $ H $. In this paper, we present new classes of multicone graphs...

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011